

Knowledge Engineering for Configuration Systems

Contents

- Configurator Development Lifecycle
- Debugging Configuration Knowledge Bases

Motivation

- Increasingly large and complex configuration knowledge bases
- Requirements:
 - Integration into standard software development processes
 - Automated testing and debugging

Configurator Development Process

FIGURE 11.1

Configurator development process adapted from Felfernig et al. (2000a).

UML Configuration Model

FIGURE 6.9

Fragment of the PC model (adapted part of Figure 6.7).

UML Configuration Model: Constraints

Table 6.3	Constraints related to the configuration model in Figure 6.9.	
Name	Description	
gc1	CPUs of type CPUS are incompatible with motherboards of type MBDiamond	
gc2	CPUs of type CPUD are incompatible with motherboards of type MBSilver	
gc3	Each OS of type OSAlpha requires a CPU of type CPUD	
prc2'	The price of one personal computer (PC) is determined by the prices of	
	the motherboard (MB), the CPUs, and the operating system (OS)	
resc1	The computer price must be less or equal to the	
	maxprice defined by the customer	

UML Configuration Model: Formalization of Product Structure

Table 6.4 Example formalizations of the model (C_{KB}) depicted in Figure 6.9. *getcpus* denotes a collection operator (Felfernig et al., 2000a) that collects all *cpus* connected with mother-board Y. For reasons of readability we limit the example to attribute range restrictions (e.g., PC(efficiency)).

Modeling Facility	Example in FOL
Component types	{PC/1, MB/1, MBDiamond/1, MBSilver/1, CPU/1, CPUS/1, CPUD/1, OS/1, OSAlpha/1, OSBeta/1} $\subseteq CLANG$
Attributes	{efficiency/2, price/2, maxprice/2, clockrate/2, hdcapacity/2} $\subseteq CLANG$
Relationships	{pc-of-mb/2, mb-of-pc/2, mb-of-cpu/2, cpu-of-mb/2, pc-of-os/2, os-of-pc/2} $\subseteq CLANG$
PC (efficiency)	$\{\forall X : PC(X) \to \exists_1^1 A_X : efficiency(X, A_X) \land A_X = A \lor A_X = B \lor A_X = C.\}$ $\subseteq C_{KB}$
MB (efficiency)	$\{\forall X : MB(X) \to \exists_1^1 A_X : efficiency(X, A_X) \land A_X = A \lor A_X = B \lor A_X = C.\}$ $\subseteq C_{KB}$
MB (price)	$\{\forall X: MB(X) \to \exists_1^1 A_X: price(X, A_X) \land A_X \ge 0 \land A_X \le 350.\} \subseteq C_{KB}$
CPUS (price)	$\{\forall X : CPUS(X) \rightarrow \exists_1^1 A_X : price(X, A_X) \land A_X = 100.\} \subseteq C_{KB}$
part-of(PC,MB)	$\{\forall X : PC(X) \to \exists_1^1 Y : MB(Y) \land \text{pc-of-mb}(X, Y).\} \subseteq C_{KB}$
	$\{\forall X: MB(X) \to \exists_1^1 Y: PC(Y) \land \text{ mb-of-pc}(X, Y).\} \subseteq C_{KB}$
part-of(PC,OS)	$\{\forall X : PC(X) \to \exists_1^1 Y : OS(Y) \land \text{pc-of-os}(X, Y)\} \subseteq C_{KB}$
	$\{\forall X: OS(X) \to \exists_1^1 Y: PC(Y) \land \text{ os-of-pc}(X, Y).\} \subseteq C_{KB}$

UML Configuration Model: Formalization of Constraints

gc1	$\{\forall X, Y : mb-of-cpu(X, Y) \land MBDiamond(X) \land CPUS(Y) \rightarrow false.\} \subseteq C_{KB}$
gc2	$\{\forall X, Y : mb-of-cpu(X, Y) \land MBSilver(X) \land CPUD(Y) \rightarrow false.\} \subseteq C_{KB}$
gc3	$\{\forall X, Y : PC(X) \land OSAlpha(Y) \land$
	$pc\text{-of-os}(X, Y) \rightarrow \exists_1^1 U, V : MB(U) \land CPUD(V) \land pc\text{-of-mb}(X, U) \land$
	mb-of-cpu (U, V) . $\} \subseteq C_{KB}$
prc2'	$\{\forall X : PC(X) \land price(X, PCP) \land pc\text{-of-mb}(X, Y) \land$
	$pc-of-os(X, Z) \land getcpus(Y, CPUs) \rightarrow PCP =$
	$\sum_{c \in \{Y, Z\} \cup CPUs \land price(c, P)} P.\} \subseteq C_{KB}$
resc1	$\{\forall X : PC(X) \land price(X, PCP) \land maxprice(X, PCMP) \rightarrow PCP \leq PCMP.\} \subseteq$
	C _{KB}

Engineering of CKBs

Goal: Automated testing & debugging of constraint sets **Approach**:

- induce conflicts in the constraint set
- resolve the conflict sets using model-based diagnosis

Result: minimal diagnoses for constraint sets.

Diagnosing Constraint Sets: Approach

 $\begin{array}{l} \textbf{Conflict Set CS} = \{c_1,\,c_2,\,\ldots,\,c_q\} \subseteq C \text{ s.t. } \exists t_i \in T: \ CS \cup \{t_i\} \text{ inconsistent.} \\ \textbf{Minimal (CS)}: \ \nexists \ CS' \text{ with } CS' \subset CS. \end{array}$

Diagnosis $\Delta \subseteq C$: C - $\Delta \cup \{t_i\}$ consistent $\forall t_i \in T$.

Diagnosing Constraint Sets: Example

Diagnosing Constraint Sets: Example

$$V = \{v_{1}, v_{2}, v_{3}, v_{4}\}$$

$$d_{v1} = [1..4], d_{v2} = [1..4], d_{v3} = [1..3], d_{v4} = [1..2]$$

$$c_{1}: v_{1} > v_{2}$$

$$c_{2}: v_{3} > v_{1}$$

$$c_{3}: v_{3} = v_{1}$$

$$c_{4}: v_{4} < v_{3}$$

$$c_{5}: v_{3} > v_{2}$$

$$c_{6}: v_{4} < v_{1}$$

$$C_{7}: v_{4} <> v_{2}$$

$$V = \{v_{1}, v_{2}, v_{3}, v_{4}\}$$

$$V = \{v_{1}, v_{3}, v_{4}\}$$

Exercises

- 1. Is it possible that positive test cases can interfere with each other (explain why)?
- 2. Is it possible that negative test cases can interfere with each other (explain why)?
- 3. Is it possible that positive and negative test case can interfere with each other (explain why)?
- Given the following set of constraints AC={x1=1, x2=2, x3=x4, x3>x2} (dom(xi)=[1,2,3]) and a set of positive test cases T={x1=2, x3=2}. Determine the complete set of minimal conflicts and all corresponding diagoses.

Thank You!

References (1)

- (1) Agarwal, R., Tanniru, M., 1992. A structured methodology for developing production systems. Decision Support Systems 8 (6), 483–499.
- (2) Arana, J., Elejoste, M., Lakunza, J.A., Uribetxebarria, J., Zangitu, M., 2007. Product Modeling and Configuration Experiences. Idea Group. pp. 33–58, (Chapter 2)
- (3) Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R., Zanker, M., 2003. A framework for the development of personalized, distributed web-based configuration systems. AIMagazine 24 (3), 93–108.
- (4) Barker, V., O'Connor, D., Bachant, J., Soloway, E., 1989. Expert systems for configuration at Digital: XCON and beyond. Communications of the ACM 32 (3), 298–318.
- (5) Davis, J., 1990. Effect of modularity on maintainability of rule-based systems. International Journal ofMan-Machine Studies 32 (4), 439–447.
- (6) Dietrich, A.J., Kirn, S., Timm, I.J., 2006. Implications of mass customization on business information systems. International Journal on Mass Customization 1 (2–3), 218–236.
- (7) Felfernig, A., 2007. Standardized configuration knowledge representations as technological foundation for mass customization. IEEE Transactions on Engineering Management 54 (1), 41–56.
- (8) Felfernig, A., Zanker, M., 2000. Diagrammatic acquisition of functional knowledge for product configuration systems with the unified modeling language. In: Proceedings of the First International Conference on Theory and Application of Diagrams. LNCS 1889. Springer, pp. 361–375.
- (9) Felfernig, A., Friedrich, G., Jannach, D., 2000a. Generating product configuration knowledge bases from precise domain extended UML models. In: 12th International Conference on Software Engineering and Knowledge Engineering (SEKE'2000). Chicago, Illinois, pp. 284–293.

References (2)

- (10) Felfernig, A., Jannach, D., Zanker, M., 2000b. Contextual diagrams as structuring mechanisms for designing configuration knowledge bases in UML. In: 3rd International Conference on the Unified Modeling Language (UML2000). LNCS 1939. Springer, York, UK, pp. 240–254.
- (11) Felfernig, A., Friedrich, G., Jannach, D., Zanker, M., 2001. Towards distributed configuration. In: 24th German Conference on Artificial Intelligence (KI). LNCS 2174. Springer, Vienna, pp. 198–212.
- (12) Felfernig, A., Friedrich, G., Jannach, D., Zanker, M., 2002. Web-based configuration of virtual private networks with multiple suppliers. In: Gero, J.S. (Ed.), Proceedings 7th International Conference on Artificial Intelligence in Design (AID-02). Kluwer Academic Publisher, Cambridge, UK, pp. 41–62.
- (13) Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., 2004. Consistency-based diagnosis of configuration knowledge bases. Artificial Intelligence 152 (2), 213–234.
- (14) Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J., 2014a. Motivation for the Book. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (Eds.), Knowledge-based Configuration FromResearch to Business Cases. Morgan Kaufmann Publishers, Waltham, MA, pp. 3–7 (Chapter 1).
- (15) Felfernig, A., Reiterer, S., Reinfrank, F., Ninaus, G., Jeran, M., 2014b. Conflict Detection and Diagnosis in Configuration. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (Eds.), Knowledgebased Configuration – From Research to Business Cases. Morgan Kaufmann, pp. 73–87 (Chapter 7).
- (16) Fleischanderl, G., Friedrich, G.E., Haselböck, A., Schreiner, H., Stumptner, M., 1998. Configuring large systems using generative constraint satisfaction. IEEE Intelligent Systems 13 (4), 59–68.
- (17) Fowler, M., 2010. Domain-Specific Languages. Addison-Wesley, Boston, MA.
- (18) Greiner, R., Smith, B.A., Wilkerson, R.W., 1989. A Correction to the algorithm in Reiter's theory of diagnosis. Artificial Intelligence 41 (1), 79–88.

References (3)

- (19) Haug, A., 2010. A software system to support the development and maintenance of complex product configurators. International Journal of Advanced Manufacturing Technology 49 (1–4), 393–406.
- (20) Heiskala, M., Paloheimo, K.-S., Tiihonen, J., 2007. Mass customization with configurable products and configurators: A review of benefits and challenges. In: Mass Customization Information Systems in Business, first ed., IGI Global, New York, NY, pp. 1–32 (Chapter 1).
- (21) Hotz, L., Felfernig, A., Stumptner, M., Ryabokon, A., Bagley, C., Wolter, K., 2014. Configuration knowledge representation and reasoning. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (Eds.), Knowledge-based Configuration – From Research to Business Cases. Morgan Kaufmann Publishers, Waltham, MA, pp. 41–72 (Chapter 6).
- (22) Hvam, L., Mortensen, N., Riis, H., 2008. Product Customization. Springer, Berlin. Jannach, D., Zanker, M., 2013. Modeling and solving distributed configuration problems: A CSP-based approach. IEEE Transactions on Knowledge and Data Engineering 25 (3), 603–618.
- (23) Jannach, D., Felfernig, A., Kreutler, G., Zanker, M., Friedrich, G., 2007. Research issues in knowledge-based configuration. In: Mass Customization Information Systems in Business. Idea Group, Newyork,NY, pp. 221–236. (Chapter 11)
- (24) Jiao, J., Tseng, M.M., 1999. A methodology of developing product family architecture for mass customization. Journal of Intelligent Manufacturing 10 (1), 3–20.
- (25) Junker, U., 2001. Preference-based programming for Configuration. In: 17th International Joint Conference on Artificial Intelligence (IJCAI-2001), Configuration Workshop. Seattle, WA, pp. 50–56.
- (26) Junker, U., 2004. QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems. In: McGuinness, D.L., Ferguson, G. (Eds.), 19th Intl. Conference on Artificial Intelligence (AAAI'04). AAAI Press, San Jose, CA, pp. 167–172.

References (4)

- (27) Junker, U., Mailharro, D., 2003. Preference programming: Advanced problem solving for configuration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM) 17 (1), 13–29.
- (28) Mailharro, D., 1998. A Classification and Constraint-based Framework for Configuration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM) 12 (04), 383–397.
- (29) Malmgren, L., Jensen, P., Olofsson, T., 2011. Product modeling of configurable building systems a case study. Journal of Information Technology in Construction (ITcon) 16, 697–712.
- (30) McDermott, J., 1982. R1: a rule-based configurer of computer systems. Artificial Intelligence 19 (1), 39–88.
- (31) McGuinness, D., Wright, J., 1998. An industrial-strength description logic-based configurator platform. Intelligent Systems and their Applications, IEEE 13 (4), 69–77.
- (32) Mikkola, J.H., 2009. Management of product architecture modularity for mass customization: modeling and theoretical considerations. IEEE Transactions on Engineering Management 54 (1), 57–69.
- (33) Mittal, S., Frayman, F., 1989. Towards a generic model of configuration tasks. 11th International Joint Conference on Artificial Intelligence (IJCAI-89), Detroit, Michigan, vol. 2 pp. 1395–1401.
- (34) Moody, D.L., 2009. The physics of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Transactions on Software Engineering 35 (6), 756–779.
- (35) Nellore, R., Söderquist, K., Eriksson, K.-A., 1999. A specification model for product development. European Management Journal 17 (1), 50–63.
- (36) Nica, I., Wotawa, F., Ochenbauer, R., Schober, C., Hofbauer, H., Boltek, S., 2014. Kapsch: reconfiguration of mobile phone networks. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (Eds.), Knowledge-based Configuration – From Research to Business Cases. Morgan Kaufmann Publishers, Waltham, MA, pp. 229–240 (Chapter 19).

References (5)

- (37) Otto, K.N., Wood, K.L., 2001. Product Design. Prentice Hall, Upper Saddle River, NY.
- (38) Piller, F.T., Blazek, P., 2014. Core capabilities of sustainable mass customization. In: Felfernig,A., Hotz, L., Bagley, C., Tiihonen, J. (Eds.),Knowledge-based Configuration – FromResearch to Business Cases. Morgan Kaufmann Publishers, Waltham, MA, pp. 107–120 (Chapter 9).
- (39) Reiter, R., 1987. A theory of diagnosis from first principles. Artificial Intelligence 32 (1), 57–95.
- (40) Shchekotykhin, K.M., Friedrich,G., Fleiss, P.,Rodler, P., 2012. Interactive ontology debugging: two query strategies for efficient fault localization. Web Semantics: Science, Services and Agents on the World Wide Web 12–13, 88–103.
- (41) Studer, R., Benjamins, V.R., Fensel, D., 1998. Knowledge engineering: principles and methods. Data and Knowledge Engineering 25 (1–2), 161–197.
- (42) Tiihonen, J., Felfernig, A., 2010. Towards recommending configurable offerings. International Journal of Mass Customization 3 (4), 389–406.
- (43) Zanker, M., Aschinger, M., Jessenitschnig, M., 2010. Constraint-based personalized configuring of product and service bundles. International Journal on Mass Customization 3 (4), 407–425.