

Conflict Detection and Diagnosis in Configuration

Alexander Felfernig^{*}, Stefan Reiterer[†], Florian Reinfrank^{*}, Gerald Ninaus^{*}, and Michael Jeran^{*}

*Graz University of Technology, Graz, Austria †SelectionArts, Graz, Austria

Contents

- Anomalies
- Conflict Detection
 - Simple Conflict Detection
 - QuickXPlain
- Diagnosis
 - HSDAG
 - Duality of Conflicts and Diagnoses
 - FastDiag

Anomalies

- Parts of a knowledge base that conform to a defined pattern of unintended structures [Chandola et al., 2009].
- Anomaly detection:
 - Automated testing and debugging (minimal subsets)
 - Redundancy detection (maximal subsets)

Working Example: Knowledge Base

 $C_{KB} = \{$

 $c_{\alpha}: \forall X: MB(X) \to \exists_1^1 Y: \text{ cpu-of-mb}(Y, X).$

 $c_{\beta}: \forall X: CPU(X) \to \exists_1^1 Y: \text{ mb-of-cpu}(Y, X).$

 $c_{\gamma}: \forall X: MB(X) \leftrightarrow MBSilver(X) \lor MBDiamond(X).$

 $c_{\delta}: \forall X: \neg MBSilver(X) \lor \neg MBDiamond(X).$

 $c_{\epsilon}: \forall X: CPU(X) \leftrightarrow CPUD(X) \lor CPUS(X).$

 $c_{\phi} : \forall X, Y : \text{cpu-of-mb}(X,Y) \leftrightarrow \text{mb-of-cpu}(Y,X).$

 $c_{\iota}: \forall X: \neg CPUD(X) \lor \neg CPUS(X).$

 $\begin{array}{l} c_{1}:\forall X,Y: \text{ cpu-of-mb} (Y,X) \land CPUS(Y) \rightarrow MBDiamond(X). \textcircled{0}\\ c_{2}:\forall X,Y: \text{ cpu-of-mb} (Y,X) \land CPUS(Y) \rightarrow MBSilver(X). \ \textit{/*should be: replacement of c1*/}\\ c_{3}:\forall X,Y: \text{ cpu-of-mb} (Y,X) \land CPUD(Y) \land MBSilver(X) \rightarrow false.\\ c_{4}:\forall X,Y: \text{ cpu-of-mb} (Y,X) \land CPUS(Y) \land MBDiamond(X) \rightarrow false. \\ c_{5}:\forall X: CPUD(X) \rightarrow false. \ \textit{/*should be disabled, but still active*/} \textcircled{0}\\ \end{array}$

Minimal Conflicts

Definition (Minimal Conflict Set). A conflict set $CS = \{ca, cb, ..., cz\}$ is a subset of *C* such that *inconsistent* ($B \cup CS$). $AC = B \cup C$ represents the set of all constraints in the knowledge base ($AC = \{c1, c2, ..., cn\}$), *B* represents the background knowledge (no conflict elements are assumed to be included in *B*), and *C* represents the set of constraints subject of conflict search. A conflict set CS is *minimal* if there does not exist a $CS' \subset CS$ that has the conflict property.

Minimal Conflicts

FIGURE 7.1

A conflict set CS is a subset of C ($AC = C \cup B$), which is inconsistent with B. CS is minimal if no subset of CS fulfills the conflict set property. In this context, B is the background knowledge that includes all constraints considered correct. An example conflict set is $CS_1 = \{c_1, c_4, c_5\}$.

Working Example: Minimal Conflicts

- Assumption: C = AC, i.e., B = {}
- $CS1 = \{c1, c4, c5\}$
- $CS2 = \{c1, c2, c5\}$
- *inconsistent*({*c*1*, c*4*, c*5} ∪ *B*)
- *inconsistent* ({*c*1*, c*2*, c*5} ∪ *B*)
- Two algorithms to determine minimal conflicts:
 - Simple Conflict Detection
 - QuickXPlain

Simple Conflict Detection

Algorithm 7.1 – SIMPLECONFLICTDETECTION

- 1 <u>func</u> SIMPLECONFLICTDETECTION $(C \subseteq AC, B = AC C\})$: CS
- 2 $CS \leftarrow \emptyset;$
- 3 <u>**if**</u> inconsistent(B) or $consistent(B \cup C)$ $return(\emptyset)$;
- 4 <u>else</u>
- 5 repeat

$$6 \qquad \Phi = CS;$$

7 repeat

8
$$c \leftarrow element(C - \Phi);$$

9
$$\Phi \leftarrow \Phi \cup \{c\};$$

10 $until inconsistent(\Phi)$

11
$$CS \leftarrow CS \cup \{c\};$$

12 until inconsistent(CS)

13
$$return(CS);$$

Best Case:
2
Worst Case:

$$\frac{(n \times (n+1))}{2} + n$$

Simple Conflict Detection: Execution

Table7.1returned a	Example of the application of minimal conflict set (CS) for $C =$	of SIMPLECONFLICTDETECTIO $\{c_5, c_4, c_3, c_2, c_1\}$ and $B = \{$	N. $CS = \{c_1, c_4, c_5\}$ is $c_{\alpha}, c_{\beta}, c_{\gamma}, c_{\delta}, c_{\epsilon}, c_{\phi}, c_{\iota}\}.$
Step	CS	с	Φ
1	Ø	<i>C</i> 5	{ <i>c</i> ₅ }
2	Ø	<i>c</i> ₄	$\{c_5, c_4\}$
3	Ø	<i>c</i> ₃	$\{c_5, c_4, c_3\}$
4	Ø	<i>c</i> ₂	$\{c_5, c_4, c_3, c_2\}$
5	Ø	<i>c</i> ₁	$\{c_5, c_4, c_3, c_2, c_1\}$
6	{ <i>c</i> ₁ }	<i>C</i> 5	$\{c_1, c_5\}$
7	{ <i>c</i> ₁ }	<i>c</i> ₄	$\{c_1, c_5, c_4\}$
8	$\{c_1, c_4\}$	<i>c</i> 5	$\{c_1, c_4, c_5\}$
9	$\{c_1, c_4, c_5\}$		-

QuickXPlain

Algorithm 7.2 – QUICKXPLAIN

- **func** QUICKXPLAIN $(C \subseteq AC, B = AC C)$: CS 1
- **<u>if</u>** isEmpty(C) or inconsistent(B) return \emptyset ; $\mathbf{2}$
- <u>else</u> return $QX(\emptyset, C, B);$ 3

4 **func** QX(
$$D, C = \{c_1..c_q\}, B$$
) : CS

- 5 $\underline{\mathbf{if}} \ D \neq \emptyset \ and \ inconsistent(B) \ return \ \emptyset;$ 6 $\underline{\mathbf{if}} \ singleton(C) \ return \ C;$

7
$$k = \lceil \frac{q}{2} \rceil;$$

8
$$C_1 = \overline{\{c_1..c_k\}}; C_2 = \{c_{k+1}..c_q\};$$

 $CS_1 = \mathrm{QX}(C_2, C_1, B \cup C_2);$ 9

10
$$CS_2 = QX(CS_1, C_2, B \cup CS_1)$$

 $return(CS_1 \cup CS_2);$ 11

Best Case: $log_2(\frac{n}{k})+2k$

Worst Case: $2k \times log_2\left(\frac{n}{k}\right) + 2k$

QuickXPlain

Table 7.2 Example of QUICKXPLAIN: $\Gamma = \{c_{\alpha}, c_{\beta}, c_{\gamma}, c_{\delta}, c_{\epsilon}, c_{\phi}, c_{\iota}\}$ is the (original) background knowledge and $CS = \{c_1, c_4, c_5\}$ is the returned conflict set. The sequence of the different QX activations is depicted in Figure 7.2.

Step	D	С	В	<i>C</i> ₁	<i>C</i> ₂	Return
1	Ø	$\{c_1,, c_5\}$	Γ	$\{c_1, c_2, c_3\}$	$\{c_4, c_5\}$	$\{c_1, c_4, c_5\}$
2	$\{c_4, c_5\}$	$\{c_1, c_2, c_3\}$	$\Gamma \cup \{c_4, c_5\}$	$\{c_1, c_2\}$	{ <i>c</i> ₃ }	{ <i>c</i> ₁ }
3	{ <i>C</i> ₃ }	$\{c_1, c_2\}$	$\Gamma \cup \{c_3, \ldots, c_5\}$	{ <i>c</i> ₁ }	{ <i>c</i> ₂ }	{ <i>c</i> ₁ }
4	{ <i>c</i> ₂ }	{ <i>c</i> ₁ }	$\Gamma \cup \{c_2, \ldots, c_5\}$	Ø	Ø	{ <i>c</i> ₁ }
5	{ <i>c</i> ₁ }	{ <i>C</i> ₂ }	$\Gamma \cup \{c_1, c_3, c_4, c_5\}$	Ø	Ø	Ø
6	{ <i>c</i> ₁ }	{ <i>C</i> ₃ }	$\Gamma \cup \{c_1, c_4, c_5\}$	Ø	Ø	Ø
7	{ <i>c</i> ₁ }	$\{c_4, c_5\}$	$\Gamma \cup \{c_1\}$	$\{c_4\}$	$\{c_5\}$	$\{c_4, c_5\}$
8	{ <i>C</i> ₅ }	{ <i>C</i> ₄ }	$\Gamma \cup \{c_1, c_5\}$	Ø	Ø	{ <i>c</i> ₄ }
9	{ <i>c</i> ₄ }	{ <i>C</i> ₅ }	$\Gamma \cup \{c_1, c_4\}$	Ø	Ø	{ <i>C</i> ₅ }

Runtime of Conflict Detection Algorithms

Table 7.3 Runtime evaluation: The average runtime in milliseconds (ms) needed by SIMPLECONFLICTDETECTION (SCD) and QUICKXPLAIN to calculate one minimal conflict set (on a standard PC). The basis for this evaluation are knowledge bases from www.splot-research.org.

Domain	#con.	#var.	QUICKXPLAIN (ms)	SCD (ms)
DELL laptops	285	47	75.7	643.2
Smarthomes	73	55	42.6	89.6
Cars	150	73	42.9	406.2
Xerox printers	242	158	78.1	812.2

Diagnosis (Task)

Definition (Diagnosis Task). A *diagnosis task* can be defined by the tuple (C, AC) where $AC = B \cup C$, B is the background knowledge, and C is the set of constraints to be analyzed.

Definition (Diagnosis). A *diagnosis* for a given diagnosis task (C,AC) is a set of constraints $\Delta \subseteq C$ such that $B \cup C - \Delta$ is consistent. A diagnosis Δ is *minimal* if there does not exist a diagnosis $\Delta \ ' \subset \Delta$ with the diagnosis property. Finally, a minimal diagnosis Δ is denoted as *minimal cardinality diagnosis* if there does not exist a minimal diagnosis with $|\Delta| < |\Delta|$.

Minimal Diagnoses **c**_α Cβ В diagnosis ... ° C_{1 1} \mathbf{C}_{ι} **C**₄ CS₁ AC (C₁) **C**₅ ° **c**₂ C₁ **C**₃ С **C**₁ **C**₄ **c**₂ CS_2 **C**₅ С₅ **C**₅

FIGURE 7.3

A diagnosis Δ is a subset of C ($AC = C \cup B$) such that $B \cup C - \Delta$ is consistent. Δ is minimal if no subset of Δ fulfills the diagnosis property. B again represents the background knowledge. An example diagnosis is $\Delta_1 = \{c_1\}$.

Hitting Set Directed Acyclic Graph (HSDAG)

FIGURE 7.4

Breadth-first based search for diagnoses on the basis of the minimal conflict sets $CS_1 = \{c_1, c_4, c_5\}$ and $CS_2 = \{c_1, c_2, c_5\}$. The resulting minimal diagnoses are $\Delta_1 = \{c_1\}, \Delta_2 = \{c_5\}$, and $\Delta_3 = \{c_2, c_4\}$.

Duality of Conflicts and Diagnoses

FIGURE 7.5

Breadth-first based search for conflicts on the basis of the minimal diagnoses $\Delta_1 = \{c_1\}, \Delta_2 = \{c_5\}$, and $\Delta_3 = \{c_2, c_4\}$. The resulting minimal conflict sets are $CS_1 = \{c_1, c_2, c_5\}, CS_2 = \{c_1, c_4, c_5\}$.

FastDiag

Algorithm 7.3 - FASTDIAG

- 1 <u>**func</u>** FASTDIAG($C \subseteq AC, AC = \{c_1..c_t\}$) : diagnosis Δ </u>
- 2 <u>**if**</u> isEmpty(C) or inconsistent(AC C) return \emptyset
- 3 <u>else</u> return $FD(\emptyset, C, AC);$

4 **func** FD(
$$D, C = \{c_1..c_q\}, AC$$
) : diagnosis Δ

- 5 <u>**if**</u> $D \neq \emptyset$ and consistent(AC) return \emptyset ;
- 6 $\underline{\mathbf{if}} singleton(C) return C;$

7
$$k = \frac{q}{2};$$

8
$$C_1 = \{c_1..c_k\}; C_2 = \{c_{k+1}..c_q\};$$

9
$$D_1 = FD(C_2, C_1, AC - C_2);$$

10
$$D_2 = FD(D_1, C_2, AC - D_1);$$

11 $return(D_1 \cup D_2);$

Best Case: $log_2\left(\frac{n}{d}\right) + 2d$ Worst Case: $2d \times log_2(\frac{n}{d})$ - 2d

Runtime of Diagnosis Algorithms

Table 7.5 Runtime evaluation: The average runtime in milliseconds (ms) needed by HSDAG and FASTDIAG to calculate one minimal diagnosis (on a standard PC). The basis for this evaluation are knowledge bases from www.splot-research.org (Dell laptops (laptops), smarthomes (homes), cars, and Xerox printers (printers)).

Domain	#con.	#var.	FASTDIAG (ms)			HSDAG (ms)		
#Δ _i			1	5	10	1	5	10
Laptops	285	47	1638.7	2792.3	3464.1	2668.9	4977.6	5336.3
Homes	73	55	593.1	2433.5	3167.8	2074.2	2151.4	2241.2
Cars	150	73	1404.4	2730.8	3606.0	5741.1	6347.9	6942.0
Printers	242	158	2871.9	6927.2	12091.0	>100k	>100k	>100k

Diagnosis as Optimization Problem

- Each constraint ci is represented by a variable xi [0,1]
- Conflict sets CSj are represented by constraints csj
- Example: $cs1: x1 + x4 + x5 \ge 1$

```
cs_{1} : x_{1} + x_{4} + x_{5} \ge 1.

cs_{2} : x_{1} + x_{2} \ge 1.

cs_{3} : x_{1} + x_{3} \ge 1.

cs_{4} : x_{2} + x_{3} \ge 1.
```

• Optimization function:

```
minimize : x_1 + x_2 + x_3 + x_4 + x_5
```


Diagnosis as Optimization Problem

Table 7.6 Representation of a diagnosis task as optimization problem. In this case, all minimal conflict sets (CS_1, \ldots, CS_4) have to be determined before the optimization can start (1 (0) denotes the fact that c_i is part (not part) of the minimal conflict set).

Conflict Set	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	<i>c</i> ₅
CS ₁	1	0	0	1	1
CS ₂	1	1	0	0	0
CS ₃	1	0	1	0	0
CS ₄	0	1	1	0	0
		\checkmark			

cs1: x1 + x4 + x5 ≥ 1

Solution Space: Predefined Instances

Table 7.7 A simple configuration problem defined by the variables $V = \{v_1, v_2, v_3\}$, dom $(v_i) = \{1,2,3\}$, and the constraint $c_p = conf_1 \lor conf_2 \lor conf_3 \lor conf_4 \in C_{KB}$.

Variables	conf ₁	conf ₂	conf ₃	conf ₄
<i>v</i> ₁	1	3	1	1
<i>v</i> ₂	2	2	2	2
V ₃	3	1	2	1

Table 7.8 Example user requirements C_R and their relationship to the configurations $conf_1, \ldots, conf_4$ (1 = requirement supported, 0 = not supported).

User Requirements	conf ₁	conf ₂	conf ₃	conf ₄
<i>v</i> ₁ = 1	1	0	1	1
$v_2 = 1$	0	0	0	0
$v_3 = 1$	0	1	0	1
support	1	1	1	2

Exercises

- Given the following set of constraints AC={x1=1, x1=2, x2=x1, x3=x2, x3>2} (dom(xi)=[1,2,3]). Determine the complete set of minimal conflicts on the basis of Simple Conflict Detection.
- 2. For the identified minimal conflict sets determine the corresponding complete set of minimal diagnoses (on the basis of HSDAG).
- 3. Show how to use the HSDAG concept to determine the complete set of minimal conflicts from the diagnoses determined in 2 (duality of diagnoses and conflicts).
- 4. For the minimal conflict sets (from 1. and 3.), show how to represent a diagnosis as an optimization problem.

Thank You!

References (1)

- (1) Barker, V., O'Connor, D., Bachant, J., Soloway, E., 1989. Expert systems for configuration at Digital: XCON and beyond. Communications of the ACM 32 (3), 298–318.
- (2) Chandola, V., Banerjee, A., Kumar, V., 2009. Anomaly Detection: A Survey. ACM Computing Surveys 41 (3), 1–58.
- (3) Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., 2004. Consistencybased diagnosis of configuration knowledge bases. Artificial Intelligence 152 (2), 213–234.
- (4) Felfernig, A., Zehentner, C., Blazek, P., 2011. CoreDiag: eliminating redundancy in constraint sets. In: 22nd International Workshop on Principles of Diagnosis (DX'2011), Murnau, Germany, pp. 219–224.
- (5) Felfernig, A., Schubert, M., Zehentner, C., 2012. An efficient diagnosis algorithm for inconsistent constraint sets. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM) 26 (1), 53–62.
- (6) Felfernig, A., Schippel, S., Leitner, G., Reinfrank, F., Isak, K., Mandl,M., Blazek, P., Ninaus, G., 2013. Automated repair of scoring rules in constraintbased recommender systems. AI Communications 26 (2), 15–27.

References (2)

- (7) Felfernig, A., Reinfrank, F., Ninaus, G., Blazek, P., 2014. Redundancy detection in configuration knowledge. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (Eds.), Knowledge-based Configuration – From Research to Business Cases. Morgan Kaufmann Publishers, Waltham, MA, pp. 157–166 (Chapter 12).
- (8) Fijany, A., Vatan, F., 2004. New approaches for efficient solution of hitting set problem. In: Winter International Symposium on Information and Communication Technologies. Trinity College Dublin, Cancun, Mexico, pp. 1–6.
- (9) Fleischanderl, G., Friedrich, G.E., Haselböck, A., Schreiner, H., Stumptner, M., 1998. Configuring large systems using generative constraint satisfaction. IEEE Intelligent Systems 13 (4), 59–68.
- (10)Friedrich, G., Jannach, D., Stumptner, M., Zanker, M., 2014. Knowledge engineering for configuration systems. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (Eds.), Knowledge-based Configuration – From Research to Business Cases. Morgan Kaufmann, pp. 139–155 (Chapter 11).
- (11)Hotz, L., Felfernig, A., Stumptner, M., Ryabokon, A., Bagley, C., Wolter, K., 2014. Configuration knowledge representation and reasoning. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (Eds.), Knowledge-based Configuration From Research to Business Cases. Morgan Kaufmann, pp. 41–72 (Chapter 6).

References (3)

- (12)Jannach,D., 2008. Finding preferred query relaxations in content-based recommenders. In: Chountas, P., Petrounias, I., Kacprzyk, J. (Eds.), Intelligent Techniques and Tools for Novel System Architectures, London, UK, Studies in Computational Intelligence, vol. 109, pp. 81–97.
- (13)Junker, U., 2004. QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems. In: McGuinness, D.L., Ferguson, G. (Eds.), 19th International Conference on Artificial Intelligence (AAAI'04). AAAI Press, San Jose, CA, pp. 167–172.
- (14)Reiter, R., 1987. A theory of diagnosis from first principles. Artificial Intelligence 32 (1), 57–95.
- (15)Schubert, M., Felfernig, A., 2011. BFX: diagnosing conflicting requirements in constraint-based recommendation. International Journal on Artificial Intelligence Tools 20 (2), 297–312.
- (16)Schubert, M., Felfernig, A., Mandl, M., 2010. FastXPlain: conflict detection for constraint-based recommendation problems. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J., Ali, M. (Eds.), IEA/AIE 2010. Lecture Notes in Computer Science, vol. 6096. Springer, Cordoba, Spain, pp. 621–630.